non-abelian, soluble, monomial
Aliases: C22⋊D36, C12.2S4, C23.3D18, C3.(C4⋊S4), C4⋊(C3.S4), (C2×C6).D12, C3.A4⋊1D4, C6.18(C2×S4), (C22×C4)⋊2D9, (C22×C12).3S3, (C22×C6).15D6, (C2×C3.S4)⋊1C2, (C4×C3.A4)⋊1C2, C2.4(C2×C3.S4), (C2×C3.A4).3C22, SmallGroup(288,334)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C22⋊D36
G = < a,b,c,d | a2=b2=c36=d2=1, dad=cbc-1=ab=ba, cac-1=b, bd=db, dcd=c-1 >
Subgroups: 668 in 96 conjugacy classes, 18 normal (16 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, D4, C23, C23, C9, Dic3, C12, C12, D6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×D4, D9, C18, D12, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×C6, C4⋊D4, C36, C3.A4, D18, C4⋊Dic3, D6⋊C4, C2×D12, C2×C3⋊D4, C22×C12, D36, C3.S4, C2×C3.A4, C12⋊7D4, C4×C3.A4, C2×C3.S4, C22⋊D36
Quotients: C1, C2, C22, S3, D4, D6, D9, D12, S4, D18, C2×S4, D36, C3.S4, C4⋊S4, C2×C3.S4, C22⋊D36
Character table of C22⋊D36
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 9A | 9B | 9C | 12A | 12B | 12C | 12D | 18A | 18B | 18C | 36A | 36B | 36C | 36D | 36E | 36F | |
size | 1 | 1 | 3 | 3 | 36 | 36 | 2 | 2 | 6 | 36 | 36 | 2 | 6 | 6 | 8 | 8 | 8 | 2 | 2 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -2 | -2 | -2 | -2 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ7 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ8 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | 1 | 1 | 1 | 1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | -ζ98-ζ9 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ97-ζ92 | orthogonal lifted from D18 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | 1 | 1 | 1 | 1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | -ζ95-ζ94 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ98-ζ9 | orthogonal lifted from D18 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | -1 | -1 | -1 | -1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | -1 | -1 | -1 | -1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ12 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | -1 | -1 | -1 | -1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | 1 | 1 | 1 | 1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | -ζ97-ζ92 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ95-ζ94 | orthogonal lifted from D18 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | -√3 | -√3 | √3 | √3 | √3 | -√3 | orthogonal lifted from D12 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | √3 | √3 | -√3 | -√3 | -√3 | √3 | orthogonal lifted from D12 |
ρ16 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | √3 | -√3 | √3 | -√3 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | ζ4ζ97-ζ4ζ92 | ζ43ζ98-ζ43ζ9 | -ζ4ζ97+ζ4ζ92 | ζ4ζ95-ζ4ζ94 | -ζ43ζ98+ζ43ζ9 | -ζ4ζ95+ζ4ζ94 | orthogonal lifted from D36 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | -√3 | √3 | -√3 | √3 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ4ζ97+ζ4ζ92 | -ζ43ζ98+ζ43ζ9 | ζ4ζ97-ζ4ζ92 | -ζ4ζ95+ζ4ζ94 | ζ43ζ98-ζ43ζ9 | ζ4ζ95-ζ4ζ94 | orthogonal lifted from D36 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | √3 | -√3 | √3 | -√3 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ4ζ95+ζ4ζ94 | ζ4ζ97-ζ4ζ92 | ζ4ζ95-ζ4ζ94 | -ζ43ζ98+ζ43ζ9 | -ζ4ζ97+ζ4ζ92 | ζ43ζ98-ζ43ζ9 | orthogonal lifted from D36 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | √3 | -√3 | √3 | -√3 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | ζ43ζ98-ζ43ζ9 | -ζ4ζ95+ζ4ζ94 | -ζ43ζ98+ζ43ζ9 | -ζ4ζ97+ζ4ζ92 | ζ4ζ95-ζ4ζ94 | ζ4ζ97-ζ4ζ92 | orthogonal lifted from D36 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | -√3 | √3 | -√3 | √3 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ43ζ98+ζ43ζ9 | ζ4ζ95-ζ4ζ94 | ζ43ζ98-ζ43ζ9 | ζ4ζ97-ζ4ζ92 | -ζ4ζ95+ζ4ζ94 | -ζ4ζ97+ζ4ζ92 | orthogonal lifted from D36 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | -√3 | √3 | -√3 | √3 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | ζ4ζ95-ζ4ζ94 | -ζ4ζ97+ζ4ζ92 | -ζ4ζ95+ζ4ζ94 | ζ43ζ98-ζ43ζ9 | ζ4ζ97-ζ4ζ92 | -ζ43ζ98+ζ43ζ9 | orthogonal lifted from D36 |
ρ22 | 3 | 3 | -1 | -1 | -1 | 1 | 3 | -3 | 1 | 1 | -1 | 3 | -1 | -1 | 0 | 0 | 0 | -3 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×S4 |
ρ23 | 3 | 3 | -1 | -1 | 1 | 1 | 3 | 3 | -1 | -1 | -1 | 3 | -1 | -1 | 0 | 0 | 0 | 3 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ24 | 3 | 3 | -1 | -1 | -1 | -1 | 3 | 3 | -1 | 1 | 1 | 3 | -1 | -1 | 0 | 0 | 0 | 3 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ25 | 3 | 3 | -1 | -1 | 1 | -1 | 3 | -3 | 1 | -1 | 1 | 3 | -1 | -1 | 0 | 0 | 0 | -3 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×S4 |
ρ26 | 6 | -6 | -2 | 2 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | -6 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C4⋊S4 |
ρ27 | 6 | 6 | -2 | -2 | 0 | 0 | -3 | 6 | -2 | 0 | 0 | -3 | 1 | 1 | 0 | 0 | 0 | -3 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C3.S4 |
ρ28 | 6 | 6 | -2 | -2 | 0 | 0 | -3 | -6 | 2 | 0 | 0 | -3 | 1 | 1 | 0 | 0 | 0 | 3 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×C3.S4 |
ρ29 | 6 | -6 | -2 | 2 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 3 | -1 | 1 | 0 | 0 | 0 | -3√3 | 3√3 | √3 | -√3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ30 | 6 | -6 | -2 | 2 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 3 | -1 | 1 | 0 | 0 | 0 | 3√3 | -3√3 | -√3 | √3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 19)(2 20)(4 22)(5 23)(7 25)(8 26)(10 28)(11 29)(13 31)(14 32)(16 34)(17 35)
(1 19)(3 21)(4 22)(6 24)(7 25)(9 27)(10 28)(12 30)(13 31)(15 33)(16 34)(18 36)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)
(1 27)(2 26)(3 25)(4 24)(5 23)(6 22)(7 21)(8 20)(9 19)(10 18)(11 17)(12 16)(13 15)(28 36)(29 35)(30 34)(31 33)
G:=sub<Sym(36)| (1,19)(2,20)(4,22)(5,23)(7,25)(8,26)(10,28)(11,29)(13,31)(14,32)(16,34)(17,35), (1,19)(3,21)(4,22)(6,24)(7,25)(9,27)(10,28)(12,30)(13,31)(15,33)(16,34)(18,36), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36), (1,27)(2,26)(3,25)(4,24)(5,23)(6,22)(7,21)(8,20)(9,19)(10,18)(11,17)(12,16)(13,15)(28,36)(29,35)(30,34)(31,33)>;
G:=Group( (1,19)(2,20)(4,22)(5,23)(7,25)(8,26)(10,28)(11,29)(13,31)(14,32)(16,34)(17,35), (1,19)(3,21)(4,22)(6,24)(7,25)(9,27)(10,28)(12,30)(13,31)(15,33)(16,34)(18,36), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36), (1,27)(2,26)(3,25)(4,24)(5,23)(6,22)(7,21)(8,20)(9,19)(10,18)(11,17)(12,16)(13,15)(28,36)(29,35)(30,34)(31,33) );
G=PermutationGroup([[(1,19),(2,20),(4,22),(5,23),(7,25),(8,26),(10,28),(11,29),(13,31),(14,32),(16,34),(17,35)], [(1,19),(3,21),(4,22),(6,24),(7,25),(9,27),(10,28),(12,30),(13,31),(15,33),(16,34),(18,36)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)], [(1,27),(2,26),(3,25),(4,24),(5,23),(6,22),(7,21),(8,20),(9,19),(10,18),(11,17),(12,16),(13,15),(28,36),(29,35),(30,34),(31,33)]])
Matrix representation of C22⋊D36 ►in GL5(𝔽37)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 36 | 1 |
0 | 0 | 0 | 36 | 0 |
0 | 0 | 1 | 36 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 36 | 0 | 0 |
0 | 0 | 36 | 0 | 1 |
0 | 0 | 36 | 1 | 0 |
27 | 7 | 0 | 0 | 0 |
30 | 27 | 0 | 0 | 0 |
0 | 0 | 36 | 1 | 0 |
0 | 0 | 36 | 0 | 0 |
0 | 0 | 36 | 0 | 1 |
14 | 29 | 0 | 0 | 0 |
29 | 23 | 0 | 0 | 0 |
0 | 0 | 36 | 0 | 0 |
0 | 0 | 36 | 1 | 0 |
0 | 0 | 36 | 0 | 1 |
G:=sub<GL(5,GF(37))| [1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,36,36,36,0,0,1,0,0],[1,0,0,0,0,0,1,0,0,0,0,0,36,36,36,0,0,0,0,1,0,0,0,1,0],[27,30,0,0,0,7,27,0,0,0,0,0,36,36,36,0,0,1,0,0,0,0,0,0,1],[14,29,0,0,0,29,23,0,0,0,0,0,36,36,36,0,0,0,1,0,0,0,0,0,1] >;
C22⋊D36 in GAP, Magma, Sage, TeX
C_2^2\rtimes D_{36}
% in TeX
G:=Group("C2^2:D36");
// GroupNames label
G:=SmallGroup(288,334);
// by ID
G=gap.SmallGroup(288,334);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-3,-2,2,85,36,1123,192,1684,6053,782,3534,1350]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^36=d^2=1,d*a*d=c*b*c^-1=a*b=b*a,c*a*c^-1=b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export